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Casimir problem of spherical dielectrics: Numerical evaluation for general permittivities
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The Casimir mutual free energyF for a system of two dielectric concentric nonmagnetic spherical bodies is
calculated, at arbitrary temperatures. The present paper is a continuation of an earlier investigation@Phys. Rev.
E 63, 051101~2001!#, in which F was evaluated in full only for the case of ideal metals~refractive indexn
5`). Here, analogous results are presented for dielectrics, for some chosen values ofn. Our basic calculational
method stems from quantum statistical mechanics. The Debye expansions for the Riccati-Bessel functions
when carried out to a high order are found to be very useful in practice~thereby overflow/underflow problems
are easily avoided!, and also to give accurate results even for the lowest values ofl down to l 51. Another
virtue of the Debye expansions is that the limiting case of metals becomes quite amenable to an analytical
treatment in spherical geometry. We first discuss the zero-frequency TE mode problem from a mathematical
viewpoint and then, as a physical input, invoke the actual dispersion relations. The result of our analysis, based
upon the adoption of the Drude dispersion relation at low frequencies, is that the zero-frequency TE mode does
not contribute for a real metal. Accordingly,F turns out in this case to be only one-half of the conventional
value at high temperatures. The applicability of the Drude model in this context has, however, been questioned
recently, and we do not aim at a complete discussion of this issue here. Existing experiments are low-
temperature experiments, and are so far not accurate enough to distinguish between the different predictions.
We also calculate explicitly the contribution from the zero-frequency mode for a dielectric. For a dielectric, this
zero-frequency problem is absent.

DOI: 10.1103/PhysRevE.66.026119 PACS number~s!: 05.30.2d, 05.40.2a, 34.20.Gj, 03.70.1k
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I. INTRODUCTION

In the Casimir world, it is desirable to consider geome
cal configurations that are amenable to an analytical tr
ment and at the same time nontrivial enough to elucidate
physically important properties. The following configuratio
turns out to satisfy these two criteria~cf. Fig. 1!: there are
two spherical bodies present with concentric surfaces ar
5a and r 5b, with a vacuum region in between. We sha
consider the free energyF(T) due to the mutual interaction
between the two bodies. We gave an analysis of this prob
earlier @1#, with the use of quantum statistical methods
well as field theoretical methods. Whereas the general
malism in@1# was valid for arbitrary~equal! permittivities«
in the two dielectric regionsr ,a and r .b, the explicit
evaluation ofF(T) for various values ofT and widthsd
5(b2a) was made for the case ofperfectly conducting
walls only, corresponding to«→`. Our purpose with the
present paper is to extend these previous consideration
cover the case of general values of the permittivity. To o
knowledge such a calculation has not been undertaken
fore, although there are similarities with the theory given
Kleinert some years ago@2#. We will henceforth assume, a
in @1#, that the two media are nonmagnetic. A brief acco
of the essentials of the present theory was recently give
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Ref. @3#. We will have to repeat some of the formalism belo
for readability.

One lesson from the calculation in@1# was that the power
of the quantum statistical method is remarkably strong wh
applied to the rather demanding case of general«. The most
central formula in our context is the statistically derived E
~40! in @1#; it gives the value ofbF[F/T for arbitrary val-
ues of temperature, width, and«. Whereas this equation wa
given in terms of a very compact notation in@1#, it will be
convenient here to rewrite it slightly. LetmP^2`,`& be an
integer corresponding to Matsubara frequenciesK
52pm/b; let n5A« be the refractive index of the two me
dia lying at r ,a and r .b; and letsl(x),el(x) be Riccati-
Bessel functions with imaginary argument defined accord
to sl(x)5(px/2)1/2I n(x),el(x)5(2x/p)1/2Kn(x), so that
their Wronskian becomesW$sl ,el%521. Here n5 l 11/2,
and I n ,Kn are modified Bessel functions. We write the fo
mula as

FIG. 1. Sketch of the spherical geometry.
©2002 The American Physical Society19-1
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bF5 ( 8
m50

`

(
l 51

`

~2l 11!@ ln~12l l
TM!1 ln~12l l

TE!#, ~1!

where the prime on the summation sign means that thm
50 term is taken with half weight. The two eigenvaluesl l

TM

andl l
TE in Eq. ~1! correspond to the transverse magnetic a

the transverse electric modes.~In the notation of Ref.@1#,
l« l[l l

TM , l l[l l
TE ; we find it useful here to emphasiz

the physical nature of the two modes.! For later use we will
write these eigenvalues as ratios. First,

l l
TM5

f 1f 2

f 3f 4
, ~2!

where

f 15nsl8~x!sl~nx!2sl~x!sl8~nx!,

f 25nel8~y!el~ny!2el~y!el8~ny!,

f 35nel8~x!sl~nx!2el~x!sl8~nx!,

f 45nel~ny!sl8~y!2el8~ny!sl~y!, ~3!

x andy being the nondimensional frequencies

x52pma/b, y52pmb/b. ~4!

We put\5c5kB51; b51/T is the inverse temperature.
should be noted that, in contradistinction to the formalism
@1#, the primes in Eqs.~3! mean derivatives with respect t
the wholeargument.

Next, the TE eigenvalues are written as

l l
TE5

g1g2

g3g4
, ~5!

where

g15sl8~x!sl~nx!2nsl~x!sl8~nx!,

g25el8~y!el~ny!2nel~y!el8~ny!,

g35el8~x!sl~nx!2nel~x!sl8~nx!,

g45el~ny!sl8~y!2nel8~ny!sl~y!. ~6!

The case of metallic walls,n5A«→`, leads to a delicate
two-limit problem as regards the contribution from zero M
subara frequency,m50. The conventional way to procee
when handling this problem within the framework of nond
persive theory, has been to take the limits in the followi
order: ~i! First set«5`; ~ii ! then take the limitm→0.

This way of taking the limits was advocated earlier in t
1978 paper of Schwinger, DeRaad, and Milton@4#, and the
same procedure was followed in Sec. VII of our previo
paper@1#. The method implies inserting the small-argume
approximations for the Riccati-Bessel functions into Eq.~1!,
resulting in the following free energy expression:
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bF~«→`!5 ( 8
m50

`

(
l 51

`

~2l 11!

3 lnH F12
sl~x!

el~x!

el~y!

sl~y!
GF12

sl8~x!

el8~x!

el8~y!

sl8~y!
G J ,

~7!

which is in agreement with Eq.~68! in @1#. If we next letx
→0, y→0 observing the same low-argument approxim
tions, we obtain as contribution fromm50

bFconv~«→`,m50!5(
l 51

`

~2l 11!lnF12S a

bD 2l 11G ,
~8!

again in agreement with@1#, Eq. ~79!. This is the conven-
tional result.Both the two electromagnetic modes are in th
way found to contribute equally to the sum in Eq.~8!.

However, a discussion has recently arisen as to whe
this recipe for dealing with them50 term in the TE mode is
really correct. The problem becomes most acute in the h
T regime, but is present at moderate and low temperatu
also. We may refer to the paper of Bostro¨m and Sernelius@5#
questioning this point, and the subsequent comment of L
oreaux@6#. What has been most welcome in recent years
the accurate experiments on the Casimir force, due to L
oreaux@7#, Mohideenet al. @8–11#, and Bressiet al. @12#.
By means of these experiments it has become much easi
formulate a sound theory. Several theoretical papers h
appeared, discussing various facets of the experiments@13–
17#. An extensive recent review has been given by Bord
et al. @18#. We also mention several other related papers@19–
21#, of a more general nature, although these also are c
cerned with finite temperature effects in a Casimir contex

One of the purposes of the present work is to analyze h
them50 case works out for the case of the spherical geo
etry of Fig. 1. It turns out that the formalism actually b
comes quite manageable. Use of the Debye expansion fo
Riccati-Bessel functions is an essential element in our an
sis, and it implies as an additional bonus that the overfl
and underflow problems that so often plague calculations
this sort are easily abandoned.

Our analysis obviously requires machine evaluation,
we will carry out the Debye expansion to the 18th order
the quantityu defined in Sec. II A below. Then the numeric
accuracy becomes quite satisfactory for all practical p
poses, even for the lowest values ofl down to l 51. Up to
about one million terms in the series will be summed. T
limiting case of metals will be handled in a physical rath
than a mathematical way by adopting the physically pref
able Drude dispersive model as input at low frequencies.
the basis of the Drude dispersion relation, we are quite n
rally led to the conclusion that there is no contribution fro
them50 TE mode to the free energyF in the case of infinite
conductivity. This implies that the conventional expressi
for F for metals has to be multiplied by one half.~This con-
clusion is actually in agreement with the outcome of t
statistical-mechanical considerations in Sec. III in@1#.! We
9-2
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show graphically several results for the variation ofF with
temperature and width, both for the ideal metallic case~in
which the zero-frequency mode is counted twice! and for the
dielectric case. Finally, we calculate the magnitude of
m50 contribution toF for a dielectric, as a function of tem
perature, and compare the result with the total value ofF.
Also, the mutual internal energyE itself is briefly discussed

We do not in the present paper aim at resolving the is
about them50 term for the TE mode for real metals. W
make some estimates, however, in the discussion in Se
item 6, choosing aluminum as a concrete example. As
experiments, the atomic force microscope experiment of M
hideen and Roy@8#, and that of Harriset al. @10#, achieved
an accurary of about 1%. These are essentially lo
temperature experiments, where the influence from them
50 TE term is small~at T50 them50 is completely neg-
ligible since the sum over discrete Matsubara frequencie
replaced by an integral over imaginary frequencies!. The all-
over temperature correction at room temperature is predi
to be of the same 1% accuracy@17# . The singlem50 tem-
perature term that we discuss is not singled out experim
tally under these circumstances.

II. NUMERICAL CONSIDERATIONS

We now define the nondimensional temperature:

t5
2pa

b
, ~9!

implying that x5mt. It turns out numerically that the con
ventional uniform asymptotic expansions of the Ricca
Bessel functions, which are used often to low orders wh
dealing with rough approximations, become quite accurat
the polynomial parts of the expansions are expanded to
order. This makes the evaluation in the present case stra
forward in principle: the polynomial parts, which genera
turn out to be about unity in magnitude, can easily
handled on a computer. The remaining parts of the Be
functions, which are simple exponentials, can be dealt w
analytically. Actually, what are needed in practical calcu
tions arefractionsbetween Bessel functions. This is the w
in which the overflow and/or underflow problems a
avoided. Overflow/underflow problems would easily arise
we instead chose to take the whole Bessel function dire
from the computer library. The remaining numerical evalu
tion is not quite trivial, though; in particular, in the case of
narrow slit the number of necessary terms turns out to
quite large, about 106, as we mentioned above.

We start by presenting our expanded version of the De
formalism.

A. The Debye expansions

Let us write the Debye expansions in the form

sl~x!5
1

2

Az~x!

@11z2~x!#1/4
enh(x) A@u~x!#, ~10!
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el~x!5
Az~x!

@11z2~x!#1/4
e2nh(x) B@u~x!#, ~11!

sl8~x!5
1

2

@11z2~x!#1/4

Az~x!
enh(x) C@u~x!#, ~12!

el8~x!52
@11z2~x!#1/4

Az~x!
e2nh(x) D@u~x!#. ~13!

Here n5 l 11/2, l 51,2, . . . , z(x)5x/n, u(x)5@1
1z2(x)#21/2, and

h~x!5
1

u~x!
1 ln

z~x!

111/u~x!
~14!

(u is the same as the symbolt in Ref. @22#!. There occur four
polynomialsA(u),B(u),C(u),D(u), which are found to be
of order unity. In Ref.@22# the first two of them,A(u) and
B(u), are expanded to orderu12, whereasC(u) and D(u)
are expanded to orderu9. In Ref. @23# we expanded all the
polynomials to orderu18. These expansions, which will no
be reproduced here, are found to be easily handled o
computer. The polynomials possess the important prop
that they go to unity whenu goes to zero.

The factors in Eqs.~10!–~13! that can take extreme value
are the exponentials. They are easily dealt with analytica

It is now convenient to calculate the following ratios b
tween the functions defined in Eqs.~3!:

f 1

f 3
52

1

2
e2nh(x)

3
n2gC@u~x!#2A@u~x!#C@u~nx!#/A@u~nx!#

n2gD@u~x!#1B@u~x!#C@u~nx!#/A@u~nx!#
,

~15!

f 2

f 4
522e22nh(y)

3
n2dD@u~y!#2B@u~y!#D@u~ny!#/B@u~ny!#

n2dC@u~y!#1A@u~y!#D@u~ny!#/B@u~ny!#
,

~16!

whereg andd are the coefficients

g5A 11z2~x!

11z2~nx!
, d5A 11z2~y!

11z2~ny!
. ~17!

Similarly,

g1

g3
52

1

2
e22nh(x)

3
gC@u~x!#2A@u~x!#C@u~nx!#/A@u~nx!#

gD@u~x!#1B@u~x!#C@u~nx!#/A@u~nx!#
,

~18!
9-3
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g2

g4
522e22nh(y)

dD@u~y!#2B@u~y!#D@u~ny!#/B@u~ny!#

dC@u~y!#1A@u~y!#D@u~ny!#/B@u~ny!#
.

~19!

Now the eigenvaluesl l
TM andl l

TE are calculable from Eqs
~2! and ~5!, with use of the expressions~15!–~19! in which
the u expansions for the four polynomials are taken fro
Ref. @23#. As in our previous paper@1#, we made use of
standardFORTRAN routines throughout.

B. Calculated results for dielectrics

On a logarithmic plot with base 10, Fig. 2 shows ho
log10(2bFt) varies withd/a for various values oft when
the medium is dilute,n51.1. The figure is to be compare
with the corresponding Fig. 1 in@1#. As expected, the mag
nitudeuFu of the mutual free energy is much less for a dilu
medium than it is in the case of ideal metallic wallsn
5`). For instance, whend/a50.2, t51, for n51.1 we see
that uFu has only about 0.1% of the value it has for an ide
metal. The various curves in Fig. 2 tend to overlap at l
temperatures. Thus the curve calculated fort50 turns out to
be indistinguishable from the curve calculated for low te
peratures up tot51. The curves in Fig. 2 are most useful f
the case of low temperatures.

Figure 3 shows how log10(2bF) varies withd/a. This
representation is convenient for the case of high temp
tures, since the curves for hight tend to overlap.

Figure 4 shows the representation in the form that is pr
ably the most instructive one, namely, log10(2bFt) as a
function of log10t. It shows clearly that there is a low
temperature plateau, extending up to a region lying so
where between 1 and 2 in the cases shown. For higher va
of t, there is a gradual change into the region whereF varies
linearly with t.

We calculated analogous figures for other values ofn also,
with results as one would expect: the influence of the m

FIG. 2. Logarithm of mutual nondimensional free energ
log10(2bFt), versus relative widthd/a for various values of the
nondimensional temperaturet52pa/b. Refractive indexn51.1.
02611
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dium becomes strengthened whenn becomes greater. Figur
5 shows, as an example, the analog of Fig. 4 in the cas
n52. For instance, whent51, d/a50.01, the magnitude
uFu is about 50 times as large whenn52 as whenn51.1.

Figure 6 shows the analogous variation ofF for the case
of an ideal metal~i.e., n5` for all v̂, the m50 mode is
counted twice!. This figure is reproduced from Fig. 3 in@1#;
it is included here both for the purpose of comparison, a
also to correct the labeling on two of the curves in our p
vious Fig. 3. We remind ourselves that the order of taking
limits in @1# was in accordance with the prescriptions~i! and
~ii ! mentioned earlier, above Eq.~7! in Sec. I~Refs.@4,1#!.

Generally, we found the asymptotic Debye expansions
be useful forx.10 and/orl .9. Then, an accuracy of eigh
digits for the individual terms was achieved. Below the
limits for x and l, we employed the machine-generat
Bessel functions. For small values ofd/a and t, slow con-

, FIG. 3. Logarithm log10(2bF) versusd/a, whenn51.1.

FIG. 4. Variation of log10(2bFt) versus log10t for various val-
ues ofd/a, whenn51.1.
9-4
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vergence was observed. The summation of the series
became rather demanding. For instance, whend/a50.05, t
50.01 about 1.1 million terms were needed, if we trunca
the summation at«51029 ~here« means the ratio between
general term in the series and the sum!. The sum itself how-
ever, is, accurate only up to four or five digits.

An important result was that even for low values ofl the
asymptotic series gave very good results. One reason for
is the high-order expansions used for the polynom
A,B,C,D. Most probably, the Debye expansions~at least
when carried out to orderu18) can be used forall x andl, for
all practical purposes.

III. THE LIMITING CASE OF A METAL

A. The nondispersive case

Although it would seem most natural to discuss the c
of a metal on the basis of a parallel-plates configuration,

FIG. 5. Same as Fig. 4, but withn52.0.

FIG. 6. Same as Fig. 5, but for an ideal metal (n5`, the m
50 mode counted twice!. Reproduced~with corrected labeling!
from Ref. @1#.
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us analyze here how the formalism behaves in the id
conductor limit when the spherical geometry of Fig. 1
given. It will actually turn out that the Debye expansion
very useful in this case also. As we treated this topic
reasonable detail in Ref.@3#, we need only be brief here.

We assume first that the medium is nondispersive. T
formal limit that we have to take is thus«→`. Let us cat-
egorize how to take the two actual limits: we let option
meanfirst taking the refractive indexn5A«→`, andthere-
after taking the Matsubara frequencym→0. Option B re-
verses the succession of the limits onn andm.

Consider first the TM mode, employing option A. Whe
n→`, u(x) is finite, whileu(nx)→0. Thus all polynomials
$A,B,C,D%@u(x)# at argument u(x) are finite, while
$A,B,C,D%@u(nx)#→1. Observing thatn2g and n2d are
proportional ton for large n we get, when taking the limit
m→0, the following expression for them50 contribution to
the TM free energy:

bFTM~m50!5
1

2 (
l 51

`

~2l 11!lnF12S a

bD 2l 11G . ~20!

Following instead option B we find precisely the same e
pression as in Eq.~20!. The m50 TM free energy is thus
robust with respect to the choice between options A and
This is actually what we would expect physically: The T
mode means that the magnetic field is transverse to the
dius vectorr at r 5a,b; this is the natural electromagnet
boundary condition at perfectly conducting surfaces.

Consider then the TE mode, employing option A. T
difference from the preceding case lies in the sensitivity
l l

TE(n→`) to the coefficientsg and d. From Eq.~17! we
get g→0,d→0, implying that, in the limit m→0, l l

TE

→(a/b)2l 11. It follows that the TE contribution to them
50 free energy is the same as given by Eq.~20!.

Employing instead option B we obtaing→1,d→1, re-
sulting in l l

TE→0 whenm→0. Consequently,

B: bFTE~m50!50. ~21!

Option B gives accordingly one-half of the conventional r
sult of Eq.~8! for the total free energy in the ideal-conduct
limit.

The immediate question is now: Which of the two optio
is correct? We cannot decide upon this only by investigat
how the mathematical formalism behaves in the limiti
cases; we have to bring physics into the consideration. T
means we have to consider a physically appropriate dis
sion relation in the limit of low frequencies. That is the top
of the next subsection.

B. The dispersive case

Let now v̂ denote the frequency along the imaginary fr
quency axis. There are two actual dispersion relations c
monly used. The first corresponds to theplasma modelof the
dielectric:
9-5
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«~ i v̂ !511
vp

2

v̂2
, ~22!

vp being the plasma frequency. As mentioned by Landau
Lifshitz ~@24#, Sec. 78!, the range of frequencies over whic
this formula is applicable begins, in practice, at the far ult
violet for light elements and at the x-ray region for heav
elements. Let us for convenience rewrite the coefficients~17!
as

g5A 11~v̂a/n!2

11~nv̂a/n!2
, d5A 11~v̂b/n!2

11~nv̂b/n!2
. ~23!

When v̂→0, it follows from Eq. ~22! that n( i v̂)v̂→vp ,
which means thatn( i v̂)v̂a/n→xp /n, where, in dimensiona
units, xp[vpa/c. Taking, for instance,vp;331016 s21

anda;1 cm we getxp;106. In practice, the most signifi
cant values ofl are much lower than this. We can thus a
sume thatxp /n@1 in Eq. ~23!, so that in practiceg→0, d
→0. That is, we recover in this way option A. In conclusio
the use of the plasma dispersion relation~38!, to a good
approximation, leads to the conventional result~8! for the
m50 total free energy for a metal.

Consider next theDrude modelfor the dielectric, corre-
sponding to

«~ i v̂ !511
vp

2

v̂~v̂1g!
, ~24!

g being the relaxation frequency. According to this relati
n( i v̂)v̂→0 when v̂→0, implying that g→1, d→1 ac-
cording to Eq.~23!. That is, we recover option B. The tota
m50 free energy for a metal is thus, according to the Dru
model, predicted to be one-half of the expression~12!.

When deciding between these dispersion relations, we
pect that relation~24! is physically correct in the limit when
v̂→0. On general grounds the permittivity has to be
versely proportional to the frequency at low frequencies;
Sec. 77 in@24#. Explicitly, «(v)→ is/v, or «( i v̂)5s/v̂,
where s is the conductivity. This is a result following di
rectly from Maxwell’s equations. The Drude model satifi
this requirement. Thus both the Drude model~and, as we
have seen, statistical mechanical methods!, support the op-
tion B above. The plasma model, Eq.~22!, as we have noted
is appropriate only for the higher frequencies.

IV. CALCULATION OF THE mÄ0 CONTRIBUTION TO F
FOR A DIELECTRIC

The delicatem50 problem in the limiting case of a meta
accentuates the following question: How large is them50
contribution to the free energy in the general case, fo
dielectric? As the last point in our paper we shall calcul
this effect, for a given value ofn, and show the result graph
cally in a typical example. This point appears to be of phy
cal interest, and with the above formalism the calculation
be easily effectuated. We now return to nondispersive the
02611
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again, so thatn is taken to be a constant. Since them50 case
does not contribute to the TE mode at all, for any finite va
of n, our present discussion has no bearing on the topic
cussed in the previous section.

Let us first summarize, from a physical point of view, ho
the free energy is distributed over the various frequencies
various values of the temperature. WhenT→0 the Matsub-
ara frequencies are closely spaced~the Matsubara summatio
being replaceable by an integral atT50), and a large num-
ber of eigenfrequencies contributes toF. The contribution
from the lowest termm50 is insignificant. WhenT in-
creases, the number of contributing Matsubara terms gra
ally becomes smaller and the frequencies gather at the lo
end of the spectrum until finally, atT→`, the termm50
dominates completely~this is the classical limit!. How this
gradual change actually occurs, as a function ofT, for a
given relative slit widthd/a, can, however, only by found by
an explicit calculation.

We recall that for a given geometry there are still thr
quantities to be contemplated, namely,$n,m,t%. Let us fix the
value ofn, and look for the contribution toF from m50, as
a function oft. From Eq.~1! we have, for an arbitrary tem
perature,

bF~m50!5
1

2 (
l 51

`

~2l 11!ln~12l l
TM! ~25!

~as noted,l l
TE does not contribute for a dielectric!. We define

Y as the ratio betweenF(m50) and the expression~1! for
the full free energy:

Y5
F~m50!

F
. ~26!

For givend/a, Y thus becomes a function only oft. Figure 7
showsY versust for various values ofd/a, for the case when
n51.1. The curves behave qualitatively as we would expe

FIG. 7. Relative importance of the zero-frequency termm50 in
the free energy, versust52pa/b. The quantityY is defined in Eq.
~26!.
9-6
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the contribution fromm50 goes to zero at very low tem
peratures, and goes toward unity at hight. Analogous curves
for other values ofn behave similarly; thus the curves calc
lated for n52.0 turn out to be essentially indistinguishab
from those in Fig. 7.

One additional conclusion to be drawn from Fig. 7 is th
the smaller the value ofd/a, the less becomes the importan
of them50 term. It is worth noticing that this is a result th
can be understood physically: When the slit is narrow,
assumed in Fig. 7, we can approximately regard the sys
as a conventional two-plate system. For the latter geome
it is known that the classicality condition can be written
dT@1, whered is the distance between the plates~cf. Sec.
82 in @25#!. Whend decreases the system thus becomes m
and more a quantum mechanical system, necessitatin
increasingly large region of frequencies to determine
value ofF. The relative importance of the low frequencies,
particular that ofm50, thus has to diminish, in accordanc
with the figure.

V. CONCLUDING REMARKS

Let us summarize our work and supply a conclusion w
some further remarks.

~1! The Debye expansion procedure is almost surprisin
effective. When carried out to sufficiently high order in th
parameteru—order 18 in the present paper—the accura
becomes fully satisfactory for all practical purposes for
values ofl, even down to the lowest valuel 51. Moreover
the formalism becomes straightforward to analyze, even
the delicate two-limit casen→`, m→0 associated with a
metal. As mentioned at the beginning of Sec. III A, it wou
seem most natural to analyze the limit of a metal assum
the standard Casimir configuration of parallel plates. In so
sense the situation seems in fact to be the reverse: the sp
cal geometry is easier to analyze in the metallic limit than
planar one. The reason for this is obvious: once plane pl
are involved, one becomes confronted with two infinite s
tial dimensions~the linear extensions of the plates!, which
lead to mathematically more delicate issues. Recent inve
gations of the Casimir effect for perfectly conducting pla
have been given by Klimchitskaya, Mostepanenko, a
Geyer@17,26#.

~2! The basic expression for the free energyF, Eq. ~1!,
holds for arbitrary temperatures as well as for arbitrary~fre-
quency! dispersion relations. In the special case of a r
metal we find, when adopting the Drude relation~in our
opinion the preferable one at low frequencies!, that them
50 TE mode does not contribute. The totalm50 free en-
ergy for a metal becomes accordingly one-half of the c
ventional expression~8!.

~3! For a dielectric~finite n) there is no limiting problem:
the m50 case does not contribute to the TE mode at
Figure 7 shows the magnitude of them50 free energy~thus
associated with the TM mode! relative to the full free energy
F. The relative contribution from them50 term is seen to
increase with temperature, as one would expect physic
the relative weight of the low Matsubara frequencies beco
ing enhanced at highT.
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~4! It ought to be stressed thatF means everywhere th
mutual free energy between the two concentric dielect
bodies. ThusF→0 whend5(b2a)→`. It may be of inter-
est to calculate the mutual internal energyE also. By means
of the thermodynamic relationE5](bF)/]b we find imme-
diately from Eq.~1!

E52 ( 8
m50

`

(
l 51

`

~2l 11!F 1

12l l
TM

]l l
TM

]b
1

1

12l l
TE

]l l
TE

]b G .

~27!

Here the partial derivatives with respect tob are most con-
veniently calculated on an analytic computer, on the basi
the expressions~2!–~6!. If series approximation for the ei
genvaluesl l

TM or l l
TE were accessible, for instance in eith

of the temperature limits, it would be convenient to use E
~27! for evaluating approximate expressions forE. Obvi-
ously,E→0 whend→`.

~5! It should be noted that since the spherical two-surfa
geometry that we are considering in our paper is differ
from the conventional parallel-plate geometry, this becom
reflected in the way in which we define the nondimensio
temperature: We define it ast52pa/b, i.e., with the inner
radiusa as the geometrical variable instead of the conv
tional gap distanced. This is a natural definition in the cas
of curved surfaces. There are thustwo different temperature
scales involved here. This implies that at ordinary room te
perature our problem becomes ahigh-temperatureproblem:
by takingT5300 K, a51 mm, we obtaint to be as large
as about 830. Under these circumstances, it follows from
Figs. 6 and 7 that them50 TE term would be most impor
tant. A measurement of the surface force in this case wo
thus be critical. So far, no measurement of this force exi
however. So far, to our knowledge no conflict between o
theory and experiments has been found.

~6! Recently, it has been argued by Klimchitskaya a
Mostepanenko@17# and Bordaget al. @16# that the Drude
dispersive model leads to inconsistencies at low frequenc
even in the conventional case of planar geometry. The rea
for this, according to these authors, is that the Drude rela
leads to a discontinuity in the reflection coefficientr 2 as the
imaginary frequencyv̂→0, in the case of perpendicular po
larization. The plasma dispersion relation, instead of
Drude relation, is accordingly given preference by these
thors since this discontinuity is not found to be present if o
uses the plasma relation.

These arguments are quite interesting, since they r
doubts not only about the validity of the Drude relation
such, but more generally even about the applicability of
Lifshitz formula at low temperatures. We intend to return
a study of this problem in a later paper@27#. The problem
with v̂→0 is most naturally discussed if one assumes pla
geometry from the outset. Here, let us merely make a
remarks, related to our treatment above, choosing a spe
metal for concreteness. When the radiia andb are large, our
spherical system of course approaches that of planar ge
etry. Let us take aluminum, for which one has@17,28#
9-7
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vp51.931016s21,

g59.631013s21. ~28!

For parallel plates separated by a gapd, the Matsubara fre-
quencies~in dimensional units! are v̂m52pkBTm/\. Zero-
temperature theory is applicable as long asdkBT/\c!1. At
T50, the contribution fromm50 is negligible, since this
contribution is completely buried in the Matsubara frequen
integral.

Assume now room temperature,T5300 K. Then for alu-
minum

v̂m5~2.48m!31014s21, ~29!

which shows that the difference between two adjacent M
subara frequencies is in this case quite appreciable. The
important frequencies for the Casimir effect occur wh
v̂m;2pc/d, corresponding to the ordinary frequenc
v̂m/2p being of the order of the inverse transit time for ph
tons between the two surfaces. This corresponds tom
;\c/(dkBT). Taking for definiteness the gap to bed
50.5mm, we obtainm;15 to be the most significant Mat
subara numbers. This is so far separated fromm50 that one
should without any further calculation expect the contrib
tion from m50 to be quite small. And this agrees with th
about 1% level of temperature correction following from
more detailed calculation@17#.

It is instructive to calculate also the conductivities, a
the refractive indices, that follow from the Drude model f
the two lowest frequencies. For convenience we now us
units. We first write the square of the refractive index,n2

5«/«0, in the same form as in conventional low-frequen
theory for metals:

n2~ i v̂ !511
s~ i v̂ !

«0v̂
. ~30!

Here s( i v̂) is an effective frequency-dependent conduct
ity. The Drude model, Eq.~24!, corresponds to

s~ i v̂ !5
«0vp

2

v̂1g
. ~31!

For the static conductivity, using Eq.~1!, we find

s~0!53.333107 S/m, ~32!

whereas for them51 case

s~ i v̂1!50.933107 S/m. ~33!

The effective conductivity thus diminishes quickly when w
move away fromm50. The corresponding square refracti
indices are

n2~ i v̂→0!5~3.76/v̂ !31018, ~34!

n2~ i v̂1!5~1.05/v̂1!31018. ~35!
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These refractive indices are large. However, the import
point is that whenv̂→0, Eq. ~34! shows explicitly how
n( i v̂)v̂→0 when v̂→0. Thus, this approach is in agree
ment with our option B above, in Sec. III.

Let us return to the reflection coefficientr 2 mentioned
above, for perpendicular polarization. It is defined as@17#

r 25
p2s

p1s
, ~36!

where s and p are the conventional Lifshitz variables fo
planar geometry:

s5~«211p2!1/2,

k'[uk'u5~v̂/c!~p221!1/2. ~37!

The important question is the following: Doesr 2 really be-
come discontinuous atv̂50 if one uses the Drude model? I
our opinion, it does not. This can be seen from a pow
expansion inv̂/g of the expressions above~we keepk'

fixed; any normal metal must have a finite relaxation f
quencyg). To lowest order we obtains2p→vp

2/(2gk'c),

s1p→2k'c/v̂, resulting in

r 2→
vp

2

4k'
2 c2

v̂

g
. ~38!

This shows thatr 2 goes to zero smoothly~in our case lin-
early! as v̂/g→0; no singularity atv̂50 is found.

We intend to discuss these points in more detail in
mentioned forthcoming paper@27#. There, we will also dis-
cuss the recent claim of Fischbachet al. @29# that the results
of Boström and Sernelius@5# come into conflict with experi-
ment as well as with basic thermodynamics.

~7! Generally, when comparing the outcome of Casim
calculations with experiments, care should be taken if
calculation involves summation over infinite series. It shou
here be observed that our discussion on them50 TE term in
Sec. III, as well as in our previous paper@3#, was based upon
statistical methods, thus not involving summation metho
like the one used by van Kampenet al. @30# and others. Our
viewpoint is quite physical: The static mode has to occ
only once, not twice; it corresponds to the electric field bein
directed radially, and thus transversely to the two spher
surfaces. This is precisely the TM mode.

~8! A remark on the so-called proximity force hypothes
@31# is in order, as this hypothesis is being made use o
connection with Casimir calculations for test bodies hav
spherical segments. Some doubts have been expressed
literature concerning the accuracy of this hypothesis. T
issue has recently been analyzed by Barton~personal com-
munication!, with the result that this hypothesis remain
valid in fourth-order as well as in second-order perturbat
theory. Actually the hypothesis holds to all orders, as w
shown by Langbein@32#.

~9! Finally, the recent experiment of Bressiet al. @12# is
9-8
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interesting, since it reports a measurement of the Cas
force between conducting surfaces in aparallel configura-
tion. At present, an accuracy at a 15% level is achieved.
to be hoped that this accuracy can be improved, althoug
direct experiment of this sort is obviously quite demandin
Again, as this is a low-temperature experiment, we canno
s.
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present decide whether it is in accordance with our theory
not.
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